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Abstract

Inthis paper, we study the-elastica, the critical point of the total polynomial curvature functional
on those immersed curves satisfying suitable boundary conditions in a Riemannian manifold with
constant sectional curvature. We express the torsion optbkastica in terms of its curvature in
a closed form and completely solve the Euler—Lagrange equation by quadratures. We study the
Frenet equation of thg-elastica by using the Killing field.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The mathematical theory of elastic rods has been studied for over two centuries. This
could trace back to Daniel Bernoulliand Euler in the 173)sOne can study a bent thin rod
and consider the energy it stores. The classical Euler—Bernoulli model assigns a numerical
value to this energy which is proportionalfé k?(s) ds. The elastica is the critical point for
this total squared curvature functional on regular curves with given boundary conditions.
During recent two decades, the Euler—Bernoulli model has been reconsidered for numerous
reasong6,10,12] The total squared curvature functional has emerged as a useful quantity
in the study of geodesics and the closed thin elastic rod is often used as a model for the
DNA molecule[11]. Langer and Singer started the research in a series of papers dealing
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with closed elastic curves in spaces of constant sectional curvature and furthermore study
the convergence of the negative gradient flow of the total squared curj@fure

This paper deals with the-elastic curve, in a manifold with constant sectional curvature,
which is a critical point of the total polynomial curvature functional on those immersed
curves satisfying suitable boundary conditions. We express the torsion pfdteestica in
terms of its curvature in a closed form and completely solve the Euler—Lagrange equation by
quadratures. We find two Killing fields introduced by Langer—Sif@g] for the purpose
of integrating the structural equations of theslastic curves and express theelastica in
R® by quadratures in a system of cylindrical coordinates.

2. Equilibrium equations

Let M be amm-dimensional smooth Riemannian manifold with constant sectional curva-
ture G. The Riemannian metric will be denoted by) and the Riemannian connection by
V. We have the structural equations:

VxY —VyX —[X,Y] =0, (2.1)
VxVyZ —VyVxZ — Vixy]Z = R(X,V)Z. (2.2)

For vector fieldsX, Y, Z on M.

Lety = y(r) : I - M be animmersed curve dd. T = T(¢) will denote the unit tangent
vector, and the speedi(r) = ||y’ ()|l = (¥ (1), ¥ (1))¥2. The curvature of is defined by
k() = IV T

The lettery will also denote a variatiogr = y(w, 1) : (—¢, &) x I — M with (0, 1) =
y(t). Associated with such a variation is the variation vector fiéle= W(r) = (dy/0w)(0, 1)
along the curve/(¢). We will also writeW = W(w, 1), T = T(w, 1), v = v(w, t), etc., with
the obvious meaning. Letdenote the arclength parameter, and we write, k(w, s), etc.,
for the corresponding reparametrizatiohsbe the arclength of. We may assume= s
be the arclength parameteryfind then/ = [0, L]. By a direct computation, We have the
following lemma[6].

Lemmal. Using the above notatignve have the following formulas

1. [y, W] =0,

2. W(v) = —gv, whereg = —(Vy W, T),

3. W, T] =dT,

4. W(k?) = 2(VrVrW, VrT) + 49k + 2(R(W, DT, V7 T).

We consider the energy functional defined on a class of regular curvés in

L(w)
/ p(k) ds. (2.3)
0



R. Huang/Journal of Geometry and Physics 49 (2004) 343-349 345

Herep(k) is a polynomial ok with degree> 2 and its leading coefficient is positive. When
we confine on the curve(r) = (0, 1), sinces = ¢, we will drop¢ ands.

d L(w)
dw /0 p(k) ds

w=0

= i/p(k)vdt
dw I

L
=/ |:<R(W,T)T+VTVTW,
0

= /|:p’(k)W(k)v+p(k)ﬁ:| dr
I ow
p'(k)

w=0 w=0

VTT> + (2Kp (k) — p(k))g} ds. (2.4)

Here L(w) is the arclength of,, () = y(w, ). We givey(w, ¢) a boundary condition such
that W(0,0) = W(0,L) = 0, VrW(0,0) = VrW(0, L) = 0. Then we obtain the first
variational formula:

d (L
dw /c.) p(k) ds|,—o

L / /
= / <v$ (plik) VTT> + plik)GVTT + Vr[2kp (k) — p(k)T], W> ds.
0

(2.5)

Here we useM being a manifold with constant sectional curvat@eSo R(X, Y)Z =
G(Y, Z)X — (X, Z)Y). We obtain the Euler—Lagrange equation:

E=v2 (%IC)VTT> n plik) GVrT + Vr[(2kg (k) — p(k))T] = O. (2.6)

Definition 1. A regular unit-speed curve is calledaelastica if it satisfies the above
Euler—Lagrangequation (2.6)

Barros and Garaf2] worked out some similar results in the cagé) = (k2+2)2 and ap-
plied the critical points ofy(k2+2)2 ds to provide construction methods of Willmore—Chen

submanifolds inS”. When | revise this paper, the referee mentioned a latest paper about
closed generalized elastic curvesSf(1) [1]. In our case, there is a torsion term in the
Euler—Lagrangeequation (3.3)It might be more complicated and finally we express the
torsion of thep-elastica in terms of its curvature in a closed f(3rb).

3. Integration of the p-elastica

Supposey is a regular curve in an-dimensional manifold with constant sectional
curvatureG, y has curvaturegcy = k > 0, ko = v > 0, k3, ..., k,—1} and the Frenet frame
{No=T,N1 =N, N3= B, ..., N,_1}. Then we have the Frenet equations:

VrN; = —kiNj—1 + kiyaNiy+1, i=0,1,...,n—1 (3.1)
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Here we definggNo = k, N, = 0. Now we give the variational formulas by using these
curvatures:
E =[pP ) K&)? + p' (k" + p' (k) (k?* — 7> + G) — kp(]N + (2p" (k'
+ p' (k)7 )B + p'(k)tk3Ns3. (3.2)

Therefore, we have the Euler-Lagrange equation

PPOE)Y? + p' K" + p' (k) (K* — 7> + G) — kp(k) =0,
20"kt + p' k)t =0, ki =0,i> 2 (3.3)
This implies that we need only consider two- and three-dimensional manHoid the

constant sectional curvature case.
For k is constant, we know is constant too and they satisfy

P K> —°+G) —kpk) =0 (3.4)
from the Euler-Lagrangequation (3.3)At this case, the Frenet equation is a linear system

with constant coefficients, we can give the formula directly. Now we as&usm®t constant.
From the second equation, we know

P ()%t = c1. (3.5)

Herec, is a constant. The integral of the first equation becomes:
2

(p"(k')? + Gp (k) + p/izl@z + (kp (k) — p(k)* = ca. (3.6)
Herec; is a constant. Therefore, we can express the curvatsydy quadratures
+ / \/ P'0?p" )2 dk = / ds. (3.7)
P (k)2(c2 — Gp' (k)2 — (kp'(k) — p(k))?) — cF

Definition 2. Let y(¢) be a regular unit-speed curve M. We call a vector fieldV Killing
alongy(?) if it annihilatesv, k, .

By a direct computation, we have the following lemma.

Lemma2. Inathree-dimensional manifold M with constant sectional curvatureé&have
W(t?) = 2((1/k)VEW — (ky/ K>)VEW + (G / k) +k) VT W — (ks / k?)GW+ W(1/ k) VZT +
3gtB, tB).

We set the Killing field along the-elasticay(s) having the formW = f1(s)T(s) +
f2(s) N(s)+ f3(s) B(s), then the functiongi, f> and f3 must satisfy the following equations:
fi— k=0, fik'+ f3 + fak® = 1%+ G) = 2f4t — far =0,
F1k2T — 2kK D) + fH(3kT — 2k'D) 4 fo(—k'T 4+ k(—2GT 4 27° + 1))
+ 12k — fJK + f5(Gk+ k3 4 3k?) — fak'(G — %) =0,
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From these equations and the Euler-Lagraegeation (3.3)we found that the vector
fieldsJ, = (p'(k)k — p(k)T + p"(k)k'N + p'(k)tB andH, = p'(k)B are Killing along

the p-elasticay. The above equations constitutes a linear system whose solution space is
six-dimensional in case didf = 3 and three-dimensional in case dith= 2. WhenM is

a simply connected manifold of constant sectional curvature, this dimension agrees with the
dimension of the isometry group. Thus a Killing field along-alastic curves can extends

to a Killing field on M. Therefore we have the following theorem.

Theorem 1. Let M be asimply connected manifold with constant sectional curvatiae@
lety be ap-elasticain M. Then the vector fields= (p'(k)k— p(k)) T+ p"” (k)k' N+ p' (k)TB
and H, = p/(k)B can extend to Killing fieldg, and i/, on M.

From this theorem, we have the following corollary about the solution of the flow
alongH,,.

Corollary 1. The p-elastica in a simply connected manifold with constant sectional cur-
vature G gives the congruence solutions of the evolution equéligtdr) = p’(k)B, the
solutions which evolve by symmetries of the isometry group in M

In the casep(k) = k2 + A, herea is a constant, Hasimoto, by using the transfafm=

k exp(i fos 7 ds), prove that the evolution equatiady/dr) = p’(k)B is equivalent to the

non-linear cubic Schrédinger equatiptj. Therefore, it is a completely integrable system.
For two-dimensional manifoldZ, we consider the integral cungeof the Killing field

7y near the vertex’; of y, the point of whichk(s) has an extremum. Thatk$(sg) = 0. We

have the following theorem.

Theorem 2. Lety be a p-elastica in a two-dimensional manifold M with constant sectional
curvature G andPy = y(so) a vertex ofy. ThenJ,, is tangent toy at Py, the integral curve
7in M of jy through Py has curvature- p’ (k(s0))G/| p' (k(s0))k(so) — p(k(s0))|.

Proof. We denotek the curvature ofy and {7, N} the Frenet frame of. Then we have
T =¢T, N = N, heres = sign(p’ (k)k — p(k)) along thep-elasticay andk = (Vz T,N).
At the vertexy(so), V; T can be considered as the covariant derivativé afongy aty(so)
up to a sign. We know at(so)

v P’k — pk)T + p"K'N '\ PG -
i = 8VT =——
V(' (k)k — p(k)2 + (p'k')? [P’ (k(s0))k(s0) — p(k(s0))I
This means
P PG (3.8)

| P/ (k(s0))k(s0) — p(k(s0))|’

In three-dimensional case, the Killing fields and H,, can be used to construct a system
of cylindrical coordinates. The Euler—-Lagrange equation and its first integral imply that
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Vrd, = —Gp (k)N and|J,|?> = ¢z — Gp/(k)>. We could solve the-elastica as irf9] or
[5]. In the following, we will develop it in a special case Bf.

In R3, VvrJ, = 0. This means that the Killing field, is a constant vector field and it
is a translation field. We can obtain one coordinate fight = J,/|J,|. SinceJ, - H, =
p'(k)?t = c1, H, defines a rotation alongdirection./1 = J,, — (1/c1)|J, |>H,, is a rotation
field perpendicular td,. Thus for some normalization factor, we hay@0 = QJ;. Then
d/0r is given by a cross product

0 Jy, x B

— = . 3.9
o |J, x B (3.9)

There may be a sign due to the signpotk) for the right-hand oriented coordinate system.
In the cylindrical coordinate syste(, r, ), we can write the unit tangent vector As=
rs(9/0r) + 65(3/30) + z5(3/9z). Taking the inner products with the above formulasdtir
andd/adz, we can obtain

0 _TdB _ pRp WK

rg=T -—= = , (3.10)
or |J, x B /czp/(k)z _ c%
9 '(k)k — p(k

1. 2 PWk=pk) (3.11)
z ||

Choosing a facto© such thafQJ; has the proper length at the maxima 6§, that is, at the
maxima ofk(s). The first fundamental form of the standard cylindrical coordinate system
is ds? = dz2 4 dr? + r2de2. Then the length 06/96 at such a poini(s) is r = r(so),

the reciprocal of the curvaturg of the circler = r(sg), z = z(sg). At this point, the
unit tangent vectof” has vertical componertt - J,,/|J, | = (p'(k)k — p(k))/|J,| and the
horizontal component is’(k)t/|J,,|.

/00 || |3
vT( / )‘ =—L _|Vpsg| = L. (3.12)
|/ 06| p k)| c1lJl

| Jyl
ko= ——— Y
Pkt

Thus we have) = c1/|J,|® = c1/\/é and

0T (8/86) \/é(p/(k)k — p(k))
ST c1lJ1f2

(3.13)
Therefore we have the following theorem.

Theorem 3. Let (r, 0, z) be cylindrical coordinates given abaovend y(s) = (r(s), 6(s),
z(s)). Then we have

P (0P (oK N G JEw Wk - P

fo—m— ————— g = ——
: /CZP/(k)Z_C% : \/C—Z Cl|J1|2

(3.14)
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