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Abstract

In this paper, we study thep-elastica, the critical point of the total polynomial curvature functional
on those immersed curves satisfying suitable boundary conditions in a Riemannian manifold with
constant sectional curvature. We express the torsion of thep-elastica in terms of its curvature in
a closed form and completely solve the Euler–Lagrange equation by quadratures. We study the
Frenet equation of thep-elastica by using the Killing field.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The mathematical theory of elastic rods has been studied for over two centuries. This
could trace back to Daniel Bernoulli and Euler in the 1730s[3]. One can study a bent thin rod
and consider the energy it stores. The classical Euler–Bernoulli model assigns a numerical
value to this energy which is proportional to

∫ L

0 k2(s)ds. The elastica is the critical point for
this total squared curvature functional on regular curves with given boundary conditions.
During recent two decades, the Euler–Bernoulli model has been reconsidered for numerous
reasons[6,10,12]. The total squared curvature functional has emerged as a useful quantity
in the study of geodesics and the closed thin elastic rod is often used as a model for the
DNA molecule[11]. Langer and Singer started the research in a series of papers dealing
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with closed elastic curves in spaces of constant sectional curvature and furthermore study
the convergence of the negative gradient flow of the total squared curvature[8].

This paper deals with thep-elastic curve, in a manifold with constant sectional curvature,
which is a critical point of the total polynomial curvature functional on those immersed
curves satisfying suitable boundary conditions. We express the torsion of thep-elastica in
terms of its curvature in a closed form and completely solve the Euler–Lagrange equation by
quadratures. We find two Killing fields introduced by Langer–Singer[7,9] for the purpose
of integrating the structural equations of thep-elastic curves and express thep-elastica in
R3 by quadratures in a system of cylindrical coordinates.

2. Equilibrium equations

LetM be ann-dimensional smooth Riemannian manifold with constant sectional curva-
tureG. The Riemannian metric will be denoted by〈 , 〉 and the Riemannian connection by
∇. We have the structural equations:

∇XY − ∇YX − [X, Y ] = 0, (2.1)

∇X∇YZ − ∇Y∇XZ − ∇[X,Y ]Z = R(X, Y)Z. (2.2)

For vector fieldsX, Y,Z onM.
Letγ = γ(t) : I → M be an immersed curve onM. T = T(t) will denote the unit tangent

vector, andv the speedv(t) = ‖γ ′(t)‖ = 〈γ ′(t), γ ′(t)〉1/2. The curvature ofγ is defined by
k(t) = ‖∇T T‖.

The letterγ will also denote a variationγ = γ(w, t) : (−ε, ε) × I → M with γ(0, t) =
γ(t). Associated with such a variation is the variation vector fieldW = W(t) = (∂γ/∂w)(0, t)
along the curveγ(t). We will also writeW = W(w, t), T = T(w, t), v = v(w, t), etc., with
the obvious meaning. Lets denote the arclength parameter, and we writeγ(s), k(w, s), etc.,
for the corresponding reparametrizations.L be the arclength ofγ. We may assumet = s

be the arclength parameter ofγ and thenI = [0, L]. By a direct computation, We have the
following lemma[6].

Lemma 1. Using the above notation, we have the following formulas:

1. [γ ′(t),W(t)] = 0,
2. W(v) = −gv, whereg = −〈∇TW, T 〉,
3. [W,T ] = gT,
4. W(κ2) = 2〈∇T∇TW,∇T T 〉 + 4gk2 + 2〈R(W, T)T,∇T T 〉.

We consider the energy functional defined on a class of regular curves inM.

∫ L(w)

0
p(k)ds. (2.3)
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Herep(k) is a polynomial ofk with degree≥ 2 and its leading coefficient is positive. When
we confine on the curveγ(t) = γ(0, t), sinces = t, we will drop t ands.

d

dw

∫ L(w)

0
p(k)ds

∣∣∣∣∣
w=0

= d

dw

∫
I

p(k)vdt

∣∣∣∣
w=0

=
∫
I

[
p′(k)W(k)v + p(k)

∂v

∂w

]
dt

∣∣∣∣
w=0

=
∫ L

0

[〈
R(W, T)T + ∇T∇TW,

p′(k)
k

∇T T

〉
+ (2kp′(k) − p(k))g

]
ds. (2.4)

HereL(w) is the arclength ofγw(t) = γ(w, t). We giveγ(w, t) a boundary condition such
that W(0,0) = W(0, L) = 0, ∇TW(0,0) = ∇TW(0, L) = 0. Then we obtain the first
variational formula:

d

dw

∫ L(w)

0
p(k)ds|w=0

=
∫ L

0

〈
∇2

T

(
p′(k)
k

∇T T

)
+ p′(k)

k
G∇T T + ∇T [(2kp′(k) − p(k))T ],W

〉
ds.

(2.5)

Here we useM being a manifold with constant sectional curvatureG. SoR(X, Y)Z =
G(〈Y,Z〉X − 〈X,Z〉Y). We obtain the Euler–Lagrange equation:

E = ∇2
T

(
p′(k)
k

∇T T

)
+ p′(k)

k
G∇T T + ∇T [(2kp′(k) − p(k))T ] = 0. (2.6)

Definition 1. A regular unit-speed curve is called ap-elastica if it satisfies the above
Euler–Lagrangeequation (2.6).

Barros and Garay[2] worked out some similar results in the casep(k) = (k2+2)2 and ap-
plied the critical points of

∫
γ
(k2+2)2 ds to provide construction methods of Willmore–Chen

submanifolds inS7. When I revise this paper, the referee mentioned a latest paper about
closed generalized elastic curves inS2(1) [1]. In our case, there is a torsion term in the
Euler–Lagrangeequation (3.3). It might be more complicated and finally we express the
torsion of thep-elastica in terms of its curvature in a closed form(3.5).

3. Integration of the p-elastica

Supposeγ is a regular curve in ann-dimensional manifoldM with constant sectional
curvatureG, γ has curvatures{k1 = k > 0, k2 = τ > 0, k3, . . . , kn−1} and the Frenet frame
{N0 = T,N1 = N,N3 = B, . . . , Nn−1}. Then we have the Frenet equations:

∇TNi = −kiNi−1 + ki+1Ni+1, i = 0,1, . . . , n − 1. (3.1)
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Here we definek0N0 = knNn = 0. Now we give the variational formulas by using these
curvatures:

E = [p(3)(k)(k′)2 + p′′(k)k′′ + p′(k)(k2 − τ2 + G) − kp(k)]N + (2p′′(k)k′τ
+p′(k)τ′)B + p′(k)τk3N3. (3.2)

Therefore, we have the Euler–Lagrange equation

p(3)(k)(k′)2 + p′′(k)k′′ + p′(k)(k2 − τ2 + G) − kp(k) = 0,

2p′′(k)k′τ + p′(k)τ′ = 0, ki = 0, i > 2. (3.3)

This implies that we need only consider two- and three-dimensional manifoldM in the
constant sectional curvature case.

Fork is constant, we knowτ is constant too and they satisfy

p′(k)(k2 − τ2 + G) − kp(k) = 0 (3.4)

from the Euler–Lagrangeequation (3.3). At this case, the Frenet equation is a linear system
with constant coefficients, we can give the formula directly. Now we assumek is not constant.
From the second equation, we know

p′(k)2τ = c1. (3.5)

Herec1 is a constant. The integral of the first equation becomes:

(p′′(k)k′)2 + Gp′(k)2 + c2
1

p′(k)2
+ (kp′(k) − p(k))2 = c2. (3.6)

Herec2 is a constant. Therefore, we can express the curvaturek(s) by quadratures

±
∫ √

p′(k)2p′′(k)2

p′(k)2(c2 − Gp′(k)2 − (kp′(k) − p(k))2) − c2
1

dk =
∫

ds. (3.7)

Definition 2. Let γ(t) be a regular unit-speed curve inM. We call a vector fieldW Killing
alongγ(t) if it annihilatesv, k, τ.

By a direct computation, we have the following lemma.

Lemma 2. In a three-dimensional manifold M with constant sectional curvature G,we have
W(τ2) = 2〈(1/k)∇3

TW −(ks/k
2)∇2

TW +((G/k)+k)∇TW −(ks/k
2)GW+W(1/k)∇2

T T +
3gτB, τB〉.

We set the Killing field along thep-elasticaγ(s) having the formW = f1(s)T(s) +
f2(s)N(s)+f3(s)B(s), then the functionsf1,f2 andf3 must satisfy the following equations:

f ′
1 − f2k = 0, f1k

′ + f ′′
2 + f2(k

2 − τ2 + G) − 2f ′
3τ − f3τ

′ = 0,

f1(k
2τ′ − 2kk′τ) + f ′

2(3kτ
′ − 2k′τ) + f2(−k′τ′ + k(−2Gτ + 2τ3 + τ′′))

+ f
(3)
3 k − f ′′

3 k′ + f ′
3(Gk+ k3 + 3kτ2) − f3k

′(G − τ2) = 0.
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From these equations and the Euler–Lagrangeequation (3.3), we found that the vector
fieldsJγ = (p′(k)k − p(k))T + p′′(k)k′N + p′(k)τB andHγ = p′(k)B are Killing along
thep-elasticaγ. The above equations constitutes a linear system whose solution space is
six-dimensional in case dimM = 3 and three-dimensional in case dimM = 2. WhenM is
a simply connected manifold of constant sectional curvature, this dimension agrees with the
dimension of the isometry group. Thus a Killing field along ap-elastic curveγ can extends
to a Killing field onM. Therefore we have the following theorem.

Theorem 1. Let M be a simply connected manifold with constant sectional curvature G,and
letγ be a p-elastica in M. Then the vector fieldsJγ = (p′(k)k−p(k))T+p′′(k)k′N+p′(k)τB
andHγ = p′(k)B can extend to Killing fields̃Jγ andH̃γ on M.

From this theorem, we have the following corollary about the solution of the flow
alongHγ .

Corollary 1. The p-elastica in a simply connected manifold with constant sectional cur-
vature G gives the congruence solutions of the evolution equation(∂γ/∂t) = p′(k)B, the
solutions which evolve by symmetries of the isometry group in M.

In the casep(k) = k2 + λ, hereλ is a constant, Hasimoto, by using the transformψ =
k exp(i

∫ s

0 τ ds), prove that the evolution equation(∂γ/∂t) = p′(k)B is equivalent to the
non-linear cubic Schrödinger equation[4]. Therefore, it is a completely integrable system.

For two-dimensional manifoldM, we consider the integral curvẽγ of the Killing field
J̃γ near the vertexP0 of γ, the point of whichk(s) has an extremum. That isk′(s0) = 0. We
have the following theorem.

Theorem 2. Letγ be a p-elastica in a two-dimensional manifold M with constant sectional
curvature G andP0 = γ(s0) a vertex ofγ. ThenJγ is tangent toγ at P0, the integral curve
γ̃ in M of J̃γ throughP0 has curvature−p′(k(s0))G/|p′(k(s0))k(s0) − p(k(s0))|.

Proof. We denotẽk the curvature of̃γ and{T̃ , Ñ} the Frenet frame of̃γ. Then we have
T̃ = εT, Ñ = εN, hereε = sign(p′(k)k − p(k)) along thep-elasticaγ andk̃ = 〈∇T̃ T̃ , Ñ〉.
At the vertexγ(s0), ∇T̃ T̃ can be considered as the covariant derivative ofT̃ alongγ atγ(s0)

up to a sign. We know atγ(s0)

∇T̃ T̃ = ε∇T

(
(p′(k)k − p(k))T + p′′k′N√
(p′(k)k − p(k))2 + (p′′k′)2

)
= − p′(k)G

|p′(k(s0))k(s0) − p(k(s0))| Ñ.

This means

k̃ = − p′(k)G
|p′(k(s0))k(s0) − p(k(s0))| . � (3.8)

In three-dimensional case, the Killing fieldsJγ andHγ can be used to construct a system
of cylindrical coordinates. The Euler–Lagrange equation and its first integral imply that
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∇T Jγ = −Gp′(k)N and|Jγ |2 = c2 − Gp′(k)2. We could solve thep-elastica as in[9] or
[5]. In the following, we will develop it in a special case ofR3.

In R3, ∇T Jγ = 0. This means that the Killing fieldJγ is a constant vector field and it
is a translation field. We can obtain one coordinate field∂/∂z = Jγ/|Jγ |. SinceJγ · Hγ =
p′(k)2τ = c1,Hγ defines a rotation alongz direction.J1 = Jγ −(1/c1)|Jγ |2Hγ is a rotation
field perpendicular toJγ . Thus for some normalization factor, we have∂/∂θ = QJ1. Then
∂/∂r is given by a cross product

∂

∂r
= Jγ × B

|Jγ × B| . (3.9)

There may be a sign due to the sign ofp′(k) for the right-hand oriented coordinate system.
In the cylindrical coordinate system(z, r, θ), we can write the unit tangent vector asT =
rs(∂/∂r)+ θs(∂/∂θ)+ zs(∂/∂z). Taking the inner products with the above formulas for∂/∂r

and∂/∂z, we can obtain

rs = T · ∂

∂r
= T, Jγ, B

|Jγ × B| = p′(k)p′′(k)k′√
c2p′(k)2 − c2

1

, (3.10)

zs = T · ∂

∂z
= p′(k)k − p(k)

|Jγ | . (3.11)

Choosing a factorQ such thatQJ1 has the proper length at the maxima ofr(s), that is, at the
maxima ofk(s). The first fundamental form of the standard cylindrical coordinate system
is ds2 = dz2 + dr2 + r2 dθ2. Then the length of∂/∂θ at such a pointγ(s) is r = r(s0),
the reciprocal of the curvaturek0 of the circler = r(s0), z = z(s0). At this point, the
unit tangent vectorT has vertical componentT · Jγ/|Jγ | = (p′(k)k − p(k))/|Jγ | and the
horizontal component isp′(k)τ/|Jγ |.

k0 = |Jγ |
p′(k)τ

∣∣∣∣∇T

(
∂/∂θ

|∂/∂θ|
)∣∣∣∣ = |Jγ |

p′(k)τ|J1| |∇T J1| = |Jγ |3
c1|J1| . (3.12)

Thus we haveQ = c1/|Jγ |3 = c1/

√
c3

2 and

θs = T · (∂/∂θ)
|∂/∂θ|2 =

√
c3

2(p
′(k)k − p(k))

c1|J1|2 . (3.13)

Therefore we have the following theorem.

Theorem 3. Let (r, θ, z) be cylindrical coordinates given above, and γ(s) = (r(s), θ(s),

z(s)). Then we have

rs = p′(k)p′′(k)k′√
c2p′(k)2 − c2

1

zs = p′(k)k − p(k)√
c2

θs =
√
c3

2(p
′(k)k − p(k))

c1|J1|2 .

(3.14)
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